Tree Audit and Risk Assessment Report

Ormond College

49 College Cres, Parkville

Report prepared by Matthew P James MUrbanHort (studying) GradCertArb Dip.Arb

Submitted 27/02/2025

Melbourne Tree Care Pty.Ltd. For life and limb

Table of Contents

Executive Summary	3
Document Control	4
Background	4
Aim of Report	
Methodology	4
Planning Controls	5
Observations and Discussion	6
Tree Population Overview	
HealthStructure	
Useful Life Expectancy	
Risk Assessment	
Recommendations	10
Appendix A: Tree Locations	17
Appendix B: Individual Tree Data	22
Appendix C: Glossary of Terms	91
Appendix D: QTRA Methodology	96
Appendix E: Tree Protection Zones	99
Appendix F: References	
Appendix G: Qualifications and Experience	101
Appendix H: Report Limitations and Constraints	102
Appendix I: Disclaimer	

For life and limb

Executive Summary

A total of 206 individual trees or groups of trees located within the boundaries of Ormond College were assessed for this report. The main findings of the assessment were:

- The trees are generally in good to fair health, with most trees presenting with dense canopies and good leaf size and colour.
- While structure of the trees is generally fair and most trees present with strong and open branch and stem attachments; over one quarter of the trees present with some form of structural defect.
- Over one third of the trees onsite have a ULE less than 15 years. This is mainly due
 to mature trees with structural defects and trees in poor health. Although a
 number of trees will eventually require removal due to their structural defects, the
 ULE of the trees on the site can be improved through proactive formative pruning
 works and health treatments.
- The risk assessment found that most trees assessed pose a broadly acceptable level of risk.
- Twenty-nine trees require maintenance works within the next 12 months (high priority). The trees may not pose an immediate threat but may contain unacceptable defects or hazards given the level of pedestrian traffic. The works include remedial pruning, deadwood removal, aerial inspections, broken branch removal, cable bracing, and tree removal.
- Forty-nine trees require tree health treatments. It is best practice to proactively
 improve the health of trees onsite as some trees may not recover when their health
 deteriorates.

A budget should be allocated each year to service proactive rather than reactive tree maintenance. Proactive tree maintenance is shown to be more cost effective by mitigating risk early and prolonging the useful life of the urban forest.

A follow up site visit to meet with the property manager is recommended. This is to cover the main points of the report so a strategic management plan can be put in place

For life and limb

Document Control

Table 1. Document Control

Version	Author	Date	Amendment
1	Matthew P James	27/02/2025	Null

Background

Melbourne Tree Care was contracted to produce a survey and risk assessment report for trees located within the boundaries and surrounds of Ormond College. The survey has been commissioned to create an accurate list of trees on the property, to be used as a database for long-term record keeping, budgeting and maintenance history of each tree.

Aim of Report

- Identify all trees on the site and trees that are likely to impact the site, with data detailing their current size (DBH, crown spread, height), condition, ULE (useful life expectancy) and position within the urban forest.
- Conduct a risk assessment on each tree assessed.
- Identify any pests or diseases that may impact the trees on site.
- Prioritise maintenance schedules in order to reduce the potential liability that results from hazardous trees. It also streamlines the efficiency of tree crews and facilitates long-term budgeting.
- Detail management and maintenance requirements to maintain a healthy urban forest into the future with an acceptable amount of risk.
- Demonstrate a higher level of accountability in tree management to stakeholders.

Methodology R F F A R F

- Matthew P James of Melbourne Tree Care attended site on the 19th of February 2025.
- Data acquired is based on a Visual Tree Assessment (VTA) from the ground (Mattheck and Breloer, 1994).
- All trees within the subject site with a mature height greater than five metres were assessed.

For life and limb

- Data collected for each tree was their current size (DBH, crown spread, height), condition (health and structure), ULE (useful life expectancy), and Tree Protection Zone (TPZ).
- All measurements are estimates.
- Risk assessments were undertaken using the Quantified Tree Risk Assessment (QTRA) method.
- Tree locations are approximates based on aerial imagery.
- Data was recorded using Tree Plotter.

Planning Controls

The subject site is located in the City of Melbourne Public Use Zone – Education (PUZ2). Three planning overlays are present:

- Design and Development Overlay Schedule 66 (DD066)
- Environmental Significance Overlay Schedule 2 (ESO2)
- Heritage Overlay Schedule (HO323)

Vegetation Controls

Five trees within Ormond College are listed in the City of Melbourne's Exceptional Tree Register (2019). A permit is required to remove these trees:

- Tree 45 Corymbia haematoxylon (Lesser Bloodwood)
- Trees 92, 93, 97 Sequoia sempervirens (Coast Redwood)
- Tree 134 Eucalyptus camaldulensis (River Red Gum)

The subject site is greater than 4,000 m², triggering clause 52.17 of the Victorian Planning Scheme. Pursuant to clause 52.17, a permit is required to remove, destroy, or lop native vegetation. There is an exemption within the clause that states a permit is not required when:

- Lopping or pruning native vegetation, for maintenance only, provided no more than 1/3 of the foliage of each individual plant is lopped or prune;
- Native vegetation that is to be removed, destroyed or lopped that was either planted or grown as a result of direct seeding. This exemption does not apply to native vegetation planted or managed with public funding for the purpose of land protection or enhancing biodiversity unless the removal, destruction or lopping of the native vegetation is in accordance with written permission of the agency (or its successor) that provided the funding.

Before the removal of any vegetation, it is best practice to contact and confirm works with local government.

For life and limb

Observations and Discussion

A total of 206 individual trees or groups of trees were assessed for this report (Figure 1). See **Appendix A** for tree locations. Detailed observations for individual trees are listed in **Appendix B** and see **Appendix C** for glossary of terms.

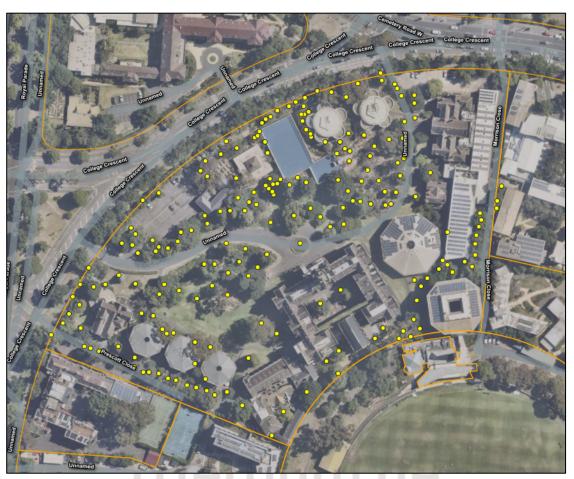


Figure 1. Site overview and tree locations

Tree Population Overview

The trees assessed are mature (48% of the tree population), semi mature (47%) and juvenile (5%) in age. The trees are a mix of exotic (57%), Australian native (31%), and Victorian native (12%) species. The tree population is comprised of over 80 different species, with *Ulmus sp.* (Elm) the most extensively planted genus onsite. A number of species could only be identified to a genus level due to a lack of identifiable features (leaves, flowers, fruit).

For life and limb

Health

The health of the trees is assessed as good (44%), fair (40%), and poor (16%). Most trees are presenting with good leaf size, colour, and crown density; all of which are indicators of good vigour and vitality (Shigo, 1991).

The large River Red Gum (Tree 134) has declined over the past three years due to an extensive sap sucking pest (Psyllid) attack (Figure 2). Soil treatments containing silicate, which have been found to be an effective non-pesticide control for sap suck pests (de Queiroz et al., 2016), have been carried out over the past three years. The health of the tree has improved since the treatments (Figure 3); however, the tree will require annual treatments to improve the vigor and vitality of the tree.

Figure 2. Tree 134 was in decline, with a thin canopy, dieback, and extensive Psyllid attack (photo taken 22/12/2022)

Figure 3. The health of Tree 134 has improved since soil treatments have been carried out. (photo taken 18/2/2025)

The three large Coast Redwoods (trees 92, 93, 97) are showing signs of stress, with discolouration (chlorosis) of the needles in the lower canopies (Figure 4 and Figure 5). This suggests there may be a chemical imbalance in the soil (Costello et al., 2003). Soil leaf samples should be collected from each tree and sent for analysis to determine the cause. A tree health program can then be formulated and implemented to ensure the health of these significant trees improves.

For life and limb

Figure 4. Tree 92 is showing signs of trees with needle chlorosis on the lower canopy.

Figure 5. Needle chlorosis on Tree 97.

Structure

The structure of the trees is assessed fair (67%), poor (26%), and good (7%). While most trees assessed present with strong stem and branch attachments and are generally free of above ground defects, 54 trees present with poor structure and may require remedial pruning or removal within the next five years.

Useful Life Expectancy

The attributes taken into consideration when determining tree useful life expectancy (ULE) are tree condition (combination of health & structure), species, age, and location. Over one third of the trees onsite (37%) have a ULE less than 15 years. This is mainly due to mature trees with structural defects and trees in poor health. Although a number of trees will eventually require removal due to their structural defects, the ULE of the trees on the site can be improved through proactive formative pruning works and health treatments.

For life and limb

Risk Assessment

The Quantified Tree Risk Assessment (QTRA) system developed by Mike Ellison (2005) was used to carry out a risk assessment. All assessments are valid for 12 months. See **Appendix D** for QTRA methodology.

The method uses:

- Target
- Size of part
- Probability of failure within the next 12 months

Target x size of part x probability of failure=RoH (Risk of Harm)

The majority of the trees (80%) are assessed as having a RoH that is less than 1/1,000,000, which is Broadly Acceptable and is already ALARP (as low as reasonably practicable). While these trees have low RoH, tree maintenance is still recommended to ensure the structural defects are proactively mitigated.

Twenty-eight trees have been assessed as having a RoH in the tolerable region of the risk threshold, however risk mitigation works may be recommended in the next 12-36 months to reduce the likelihood of failure.

Thirteen trees were assessed as having a RoH below the 1/100,000 threshold. Although this level of risk is in the tolerable region of the risk threshold, risk mitigation works are required in the next 12 months to reduce the likelihood of failure.

Table 2. Risk Assessment

RoH	No. of Trees
1/30,000	5
1/50,000	7
1/100,000	1
1/300,000	5
1/500,000	16
1/1,000,000	7
<1/1,000,000	165

For life and limb

Recommendations

Detailed recommendations for individual trees are listed in Summary of Works and Appendix B. Recommendations take into account safety of staff, students and visitors and then relate to a strategy for the long-term management of the site. Annual audits are recommended to document any changes in the health and structure of the trees on site.

All works should be carried out by suitably qualified persons (minimum AQF III), and be in accordance with Australian Standard 4373-2007 Pruning of amenity trees. Aerial inspections should be carried out by suitably qualified persons (minimum AQF V).

Summary of Works

Table 3. Work Priority

Priority	Total
Urgent	0
High	29
Medium	27
Low	32
Tree Health	49
Asset Management	15

Urgent Priority

Plan to complete these works immediately: these trees pose a threat to people or property.

No trees require urgent works.

For life and limb

High Priority

Plan to complete these works in the next 12 months (February 2026): trees may not pose immediate threat but may contain unacceptable defects or hazards for the level of pedestrian traffic.

There are **29 trees** that require work within the next 12 months.

Table 4. High Priority Works

Tree Id	Botanical Name	Recommended Works	RoH
11	Ulmus sp.	Reduce central stem by 20%. Reduce all	1/30,000
		other stems by 10%	
12	Ulmus sp.	Reduce entire canopy by 20%.	1/300,000
13	Ulmus sp.	Aerial Inspection	1/500,000
14	Ulmus sp.	Aerial Inspection, Deadwood	1/30,000
15	Ulmus sp.	Aerial Inspection, Deadwood	1/30,000
18	Ulmus sp.	Deadwood	1/30,000
29	Eucalyptus botryoides	Deadwood	1/500,000
30	Eucalyptus botryoides	Deadwood	1/500,000
32	Ulmus minor	Deadwood	1/500,000
33	Ulmus minor	Reduce southern stem by 30%. Cable brace.	1/500,000
35	Liquidambar styraciflua	Cable Brace	1/50,000
36	Liquidambar styraciflua	Deadwood	1/50,000
38	Liquidambar styraciflua	Deadwood, Reduce southern codominant stem by 30%.	1/50,000
49	Cedrus deodara	Deadwood	1/300,000
56	Fraxinus Raywood	Deadwood	1/500,000
67	Acer negundo	Deadwood	1/50,000
71	Cupressus sempervirens	Removal	1/300,000
75	Hesperocyparis arizonica	Deadwood	1/30,000
102	Cercis siliquastrum	Install prop on southern stem	1/50,000
105	Lagunaria patersonia	Aerial Inspection, Inspect cable	<1/1,000,0 00
107	Hesperocyparis	Reduce all extended lateral branches by	1/500,000
	macrocarpa	20%. Broken Branches	
109	Cupressus torulosa	Broken Branches	1/500,000
116	Acer negundo	Deadwood	1/500,000
124	Catalpa bignonioides	Removal	<1/1,000,0 00
129	Corymbia citriodora	Deadwood	1/50,000
130	Corymbia citriodora	Deadwood	1/500,000

email: <u>info@melbournetreecare.com.au</u> web: <u>www.melbournetreecare.com.au</u>

Page: 11 of 102

For life and limb

Tree Id	Botanical Name	Recommended Works	RoH
133	Eucalyptus sp.	Install cable on low south west lateral.	1/100,000
146	Ulmus sp.	Broken Branches	1/50,000
152	Jacaranda mimosifolia	Deadwood	1/500,000

Medium Priority

Plan to address these priorities within 24-36 months (February 2027/2028): while these trees pose no immediate threat, they should not be ignored. Works mostly relate to formative pruning and trees in low target areas. They include trees with observed defects that should be reviewed and monitored. Some works are recommended for general tree health, and their execution will improve the long-term prospects of the trees.

There are **27 trees** that require works within the next 24-36 months.

Table 5. Medium Priority Works

Tree Id	Botanical Name	Recommended Works	RoH
9	Ulmus sp.	Removal	1/300,000
23	Cedrus deodara	Deadwood, Weight reduce - Whole Tree	<1/1,000,000
31	Ulmus minor	Reduction Prune	<1/1,000,000
47	Eucalyptus tereticornis	Formative Prune	<1/1,000,000
59	Eucalyptus gomphocephala	Weight Reduce	<1/1,000,000
65	Sophora microphylla	Reduction Prune	<1/1,000,000
72	Cedrus deodara	Weight Reduce	1/500,000
74	Brachychiton populneus	Removal	1/300,000
84	Syzygium paniculatum	Removal	<1/1,000,000
85	Syzygium paniculatum	Removal	<1/1,000,000
88	Syzygium sp.	Removal	<1/1,000,000
91	Syzygium sp.	Removal	<1/1,000,000
98	Corymbia ficifolia	Weight Reduce	<1/1,000,000
99	Gleditsia triacanthos	Deadwood	<1/1,000,000
101	Phoenix canariensis	Remove dead fronds	<1/1,000,000
103	Melia azedarach	Adjust or replace cable.	1/1,000,000
108	Ficus rubiginosa	Formative Prune	<1/1,000,000
114	Jacaranda mimosifolia	Deadwood	1/500,000
120	Pittosporum undulatum	Removal	<1/1,000,000
148	Eucalyptus sp.	Removal	<1/1,000,000
164	Eucalyptus pauciflora	Formative Prune	<1/1,000,000
166	Eucalyptus scoparia	Formative Prune	<1/1,000,000

email: <u>info@melbournetreecare.com.au</u> web: <u>www.melbournetreecare.com.au</u>

© Melbourne Tree Care P.L This document may <u>not</u> be reproduced without permission.

Page: 12 of 102

For life and limb

Tree Id	Botanical Name	Recommended Works	RoH
192	Corymbia eximia	Formative Prune	<1/1,000,000
193	Eucalyptus pauciflora	Formative Prune	<1/1,000,000
196	Eucalyptus microcarpa	Formative Prune	<1/1,000,000
199	Eucalyptus pauciflora	Formative Prune	<1/1,000,000
220	Brachychiton sp.	Formative Prune	<1/1,000,000

Low Priority

Plan to address these priorities within 5 years (February 2030): these trees pose no immediate threat. They may include trees that require removal in the future where their viability for long-term retention is low and formative pruning.

There are **32 trees** that require works within the next 5 years.

Table 6. Low Priority Works

Tree Id	Botanical Name	Recommended Works	RoH
34	Fraxinus griffithii	Formative Prune	<1/1,000,000
50	Quercus coccinea	Formative Prune	<1/1,000,000
61	Corymbia maculata	Formative Prune	<1/1,000,000
86	Pittosporum undulatum	Removal	<1/1,000,000
87	Syzygium paniculatum	Formative Prune	<1/1,000,000
127	Corymbia citriodora	Formative Prune	<1/1,000,000
128	Corymbia citriodora	Formative Prune	<1/1,000,000
135	Quercus coccinea	Formative Prune	<1/1,000,000
158	Eucalyptus mannifera	Formative Prune	<1/1,000,000
163	Betula sp.	Formative Prune	<1/1,000,000
165	Corymbia maculata	Formative Prune	<1/1,000,000
168	Geijera parviflora	Formative Prune	<1/1,000,000
169	Corymbia citriodora	Formative Prune	<1/1,000,000
170	Corymbia citriodora	Formative Prune	<1/1,000,000
171	Corymbia citriodora	Formative Prune	<1/1,000,000
173	Corymbia citriodora	Formative Prune	<1/1,000,000
174	Corymbia citriodora	Formative Prune	<1/1,000,000
176	Eucalyptus caesia 'Silver Princess'	Formative Prune	<1/1,000,000
177	Eucalyptus sp.	Formative Prune	<1/1,000,000
178	Leptospermum sp.	Formative Prune	<1/1,000,000
179	Callistemon sp.	Formative Prune	<1/1,000,000
181	Eucalyptus sp.	Formative Prune	<1/1,000,000
183	Hakea laurina	Formative Prune	<1/1,000,000

email: <u>info@melbournetreecare.com.au</u> web: <u>www.melbournetreecare.com.au</u>

© Melbourne Tree Care P.L This document may <u>not</u> be reproduced without permission.

Page: 13 of 102

For life and limb

Tree Id	Botanical Name	Recommended Works	RoH
186	Eucalyptus pauciflora	Formative Prune	<1/1,000,000
194	Eucalyptus pauciflora	Formative Prune	<1/1,000,000
197	Corymbia eximia	Formative Prune	<1/1,000,000
200	Quercus palustris	Formative Prune	<1/1,000,000
201	Quercus palustris	Formative Prune	<1/1,000,000
202	Quercus palustris	Formative Prune	<1/1,000,000
208	Jacaranda mimosifolia	Formative Prune, Remove stakes and ties	<1/1,000,000
209	Jacaranda mimosifolia	Formative Prune, Remove stakes and ties	<1/1,000,000
221	N/A	Formative Prune	<1/1,000,000

Tree Health

Plan to address these where budget allows: these trees pose no immediate threat. Health treatments can include soil testing, soil treatments to remedy toxicities and deficiencies, and pest management. It is best to proactively improve the health of all trees onsite, as trees may not recover when their health deteriorates.

There are **49 trees** that require tree health treatments.

Table 7. Tree Health

Tree Id	Botanical Name	Recommended Works	RoH
2	Ulmus sp.	Tree Health Treatment, ELB treatment	<1/1,000,000
3	Ulmus sp.	Tree Health Treatment, ELB treatment	1/500,000
4	Ulmus sp.	Tree Health Treatment, ELB treatment	<1/1,000,000
5	Ulmus sp.	Tree Health Treatment, ELB treatment	<1/1,000,000
6	Ulmus sp.	Tree Health Treatment, ELB treatment	<1/1,000,000
7	Ulmus sp.	Tree Health Treatment, ELB treatment	<1/1,000,000
8	Ulmus sp.	Tree Health Treatment, ELB treatment	<1/1,000,000
11	Ulmus sp.	Tree Health Treatment, ELB treatment	1/30,000
13	Ulmus sp.	Tree Health Treatment, ELB treatment	1/500,000
14	Ulmus sp.	Tree Health Treatment, ELB treatment	1/30,000
15	Ulmus sp.	Tree Health Treatment, ELB treatment	1/30,000
16	Ulmus sp.	Tree Health Treatment, ELB treatment	<1/1,000,000
17	Ulmus sp.	Tree Health Treatment, ELB treatment	<1/1,000,000
18	Ulmus sp.	Tree Health Treatment, ELB treatment	1/30,000
29	Eucalyptus botryoides	Tree Health Treatment	1/500,000
30	Eucalyptus botryoides	Tree Health Treatment	1/500,000
36	Liquidambar styraciflua	Tree Health Treatment	1/50,000
37	Liquidambar styraciflua	Tree Health Treatment	<1/1,000,000

email: <u>info@melbournetreecare.com.au</u> web: <u>www.melbournetreecare.com.au</u>

© Melbourne Tree Care P.L This document may <u>not</u> be reproduced without permission.

Page: 14 of 102

For life and limb

Tree Id	Botanical Name	Recommended Works	RoH
45	Corymbia haematoxylon	Tree Health Treatment	<1/1,000,000
53	Lophostemon confertus	Tree Health Treatment	<1/1,000,000
55	Liquidambar styraciflua	Tree Health Treatment	<1/1,000,000
63	Melia azedarach	Possum Guard	<1/1,000,000
66	Pseudotsuga menziesii	Tree Health Treatment	<1/1,000,000
68	Lophostemon confertus	Tree Health Treatment	<1/1,000,000
73	Schinus molle	Tree Health Treatment	<1/1,000,000
81	Celtis australis	Possum Guard	<1/1,000,000
92	Sequoia sempervirens	Tree Health Treatment	<1/1,000,000
93	Sequoia sempervirens	Tree H <mark>eal</mark> th Treatment	<1/1,000,000
97	Sequoia sempervirens	Tree Health Treatment	<1/1,000,000
106	Celtis australis	Possum Guard	<1/1,000,000
115	Celtis australis	Possum Guard	<1/1,000,000
123	Ulmus minor	Possum Guard	<1/1,000,000
134	Eucalyptus camaldulensis	Tree Health Treatment	<1/1,000,000
141	Ulmus sp.	Tree Health Treatment	<1/1,000,000
142	Ulmus sp.	Tree Health Treatment, ELB treatment	<1/1,000,000
143	Ulmus sp.	Tree Health Treatment, ELB treatment	<1/1,000,000
144	Ulmus sp.	Tree Health Treatment, ELB treatment	<1/1,000,000
145	Ulmus sp.	Tree Health Treatment, ELB treatment	<1/1,000,000
146	Ulmus sp.	Tree Health Treatment, ELB treatment	1/50,000
147	Ulmus sp.	Tree Health Treatment, ELB treatment	<1/1,000,000
151	Magnolia grandiflora	Tree Health Treatment	<1/1,000,000
152	Jacaranda mimosifolia	Tree Health Treatment	1/500,000
156	Gleditsia triacanthos	Possum Guard	<1/1,000,000
167	Quercus palustris	Possum Guard	<1/1,000,000
182	Tristaniopsis laurina	Tree Health Treatment	<1/1,000,000
185	Corymbia sp.	Tree Health Treatment	<1/1,000,000
190	Eucalyptus scoparia	Tree Health Treatment	<1/1,000,000
198	Corymbia eximia	Tree Health Treatment	<1/1,000,000
211	Tilia cordata	Possum Guard	<1/1,000,000

Asset Management

Plan to address these trees when budget allows. These trees may pose no immediate threat. Works mostly relate to asset clearance pruning away from buildings, lights, signs and security cameras, as well as uplift pruning low branches for clearance over roads, footpaths and carparks.

There are **15 trees** that require asset management.

email: <u>info@melbournetreecare.com.au</u> web: <u>www.melbournetreecare.com.au</u>

© Melbourne Tree Care P.L This document may <u>not</u> be reproduced without permission.

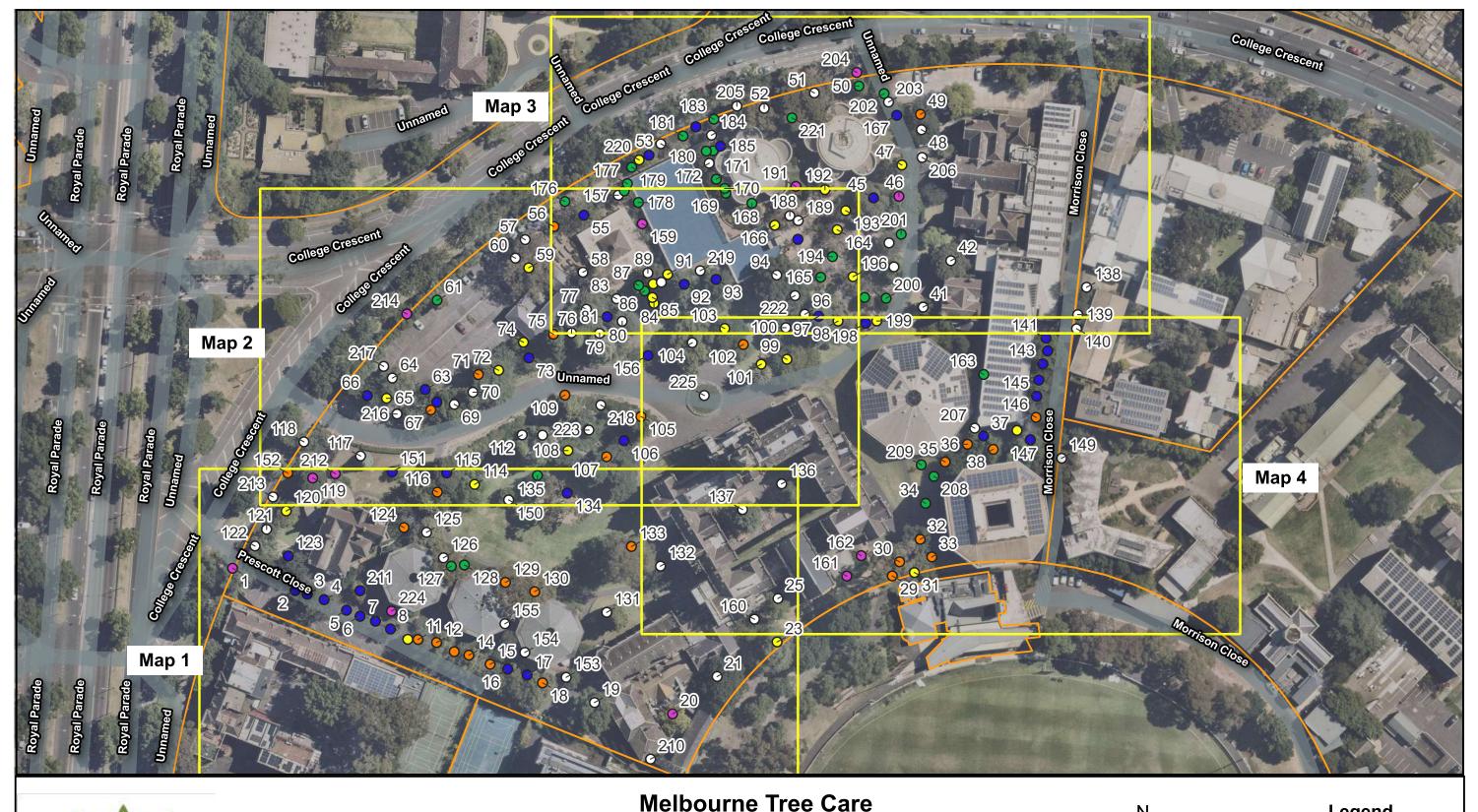
Page: 15 of 102

For life and limb

Table 8. Asset Management Works

Tree Id	Botanical Name	Recommended Works	RoH
1	Schinus molle	Uplift	<1/1,000,000
2	Ulmus sp.	Asset clearance	<1/1,000,000
20	Catalpa bignonioides	Asset clearance	<1/1,000,000
46	Quercus palustris	Uplift	<1/1,000,000
119	Syzygium sp.	Asset clearance	<1/1,000,000
141	Ulmus sp.	Asset clearance	<1/1,000,000
143	Ulmus sp.	Asset clearance	<1/1,000,000
159	Eucalyptus caesia 'Silver Princes <mark>s'</mark>	Asset clearance	<1/1,000,000
161	Cercis siliquastrum	Asset clearance	<1/1,000,000
162	Malus sp.	Asset clearance	<1/1,000,000
191	Corymbia eximia	Asset clearance	<1/1,000,000
204	Acacia sp.	Uplift	<1/1,000,000
212	Olea europaea	Asset clearance	<1/1,000,000
214	Pittosporum undulatum	Uplift	<1/1,000,000
224	Olea europaea subsp. cuspidata	Asset clearance	<1/1,000,000

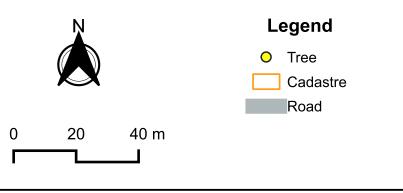
Future Works


Tree populations undergo constant change. As they age, an inventory becomes less accurate and useful. No inventory will provide information that is useful beyond five to seven years. Tree inventory tables should be updated at the completion of tree works to reflect the actions taken and then the site should be reviewed annually to note any changes that warrant attention.

email: <u>info@melbournetreecare.com.au</u> web: <u>www.melbournetreecare.com.au</u>

© Melbourne Tree Care P.L This document may <u>not</u> be reproduced without permission.

Page: 16 of 102

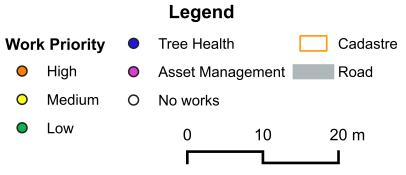




Melbourne Tree Care Tree Audit and Risk Assessment Report

Ormond College

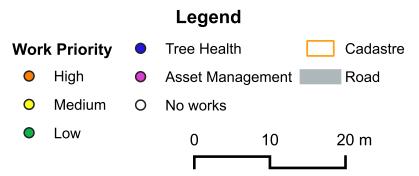
Appendix A: Site overview

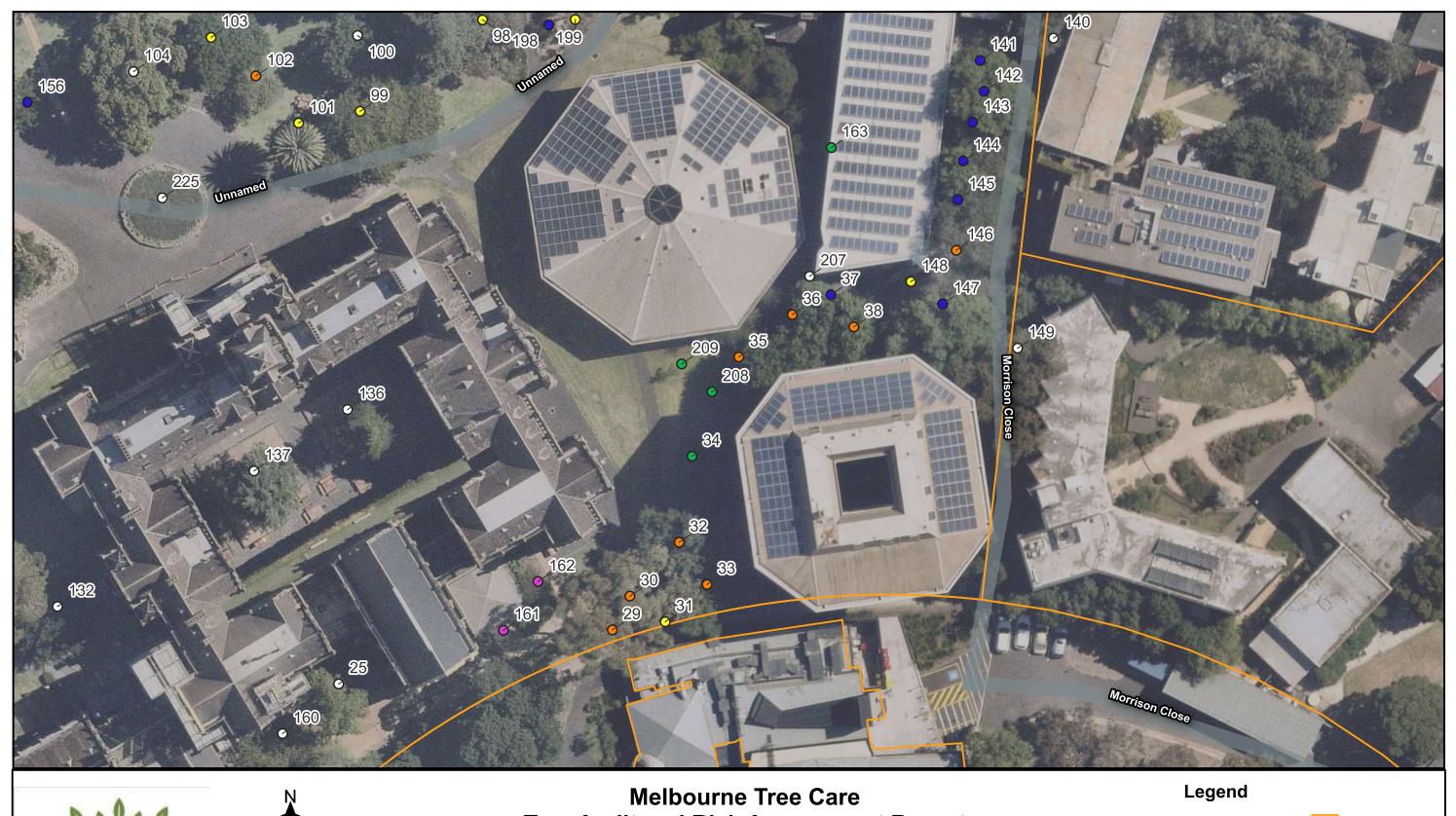


Tree Audit and Risk Assessment Report

Ormond College

Appendix A: Map 1

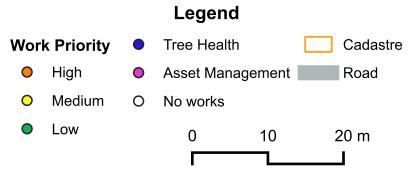





Tree Audit and Risk Assessment Report

Ormond College

Appendix A: Map 3



Tree Audit and Risk Assessment Report

Ormond College

Appendix A: Map 4

For life and limb

Tree Id: 115 **Location:** Onsite

Botanical Name: *Celtis australis* **Origin:** Exotic

Common Name: European Nettle Tree **Age:** Mature

Tree Height (m): 9 Canopy Spread (m): 7 DBH (cm): 36

Health: Good **Structure:** Fair **ULE:** Medium

Observations: Leaning. Possum grazing.

Works: Possum Guard

Priority: Tree Health **RoH:** <1/1,000,000 **TPZ (m):** 4.32

Tree Id: 116 Location: Onsite

Botanical Name: Acer negundo Origin: Exotic

Common Name Box Elder Age: Mature

Tree Height (m): 12 Canopy Spread (m): 12 DBH (cm): 60

Health: Fair **Structure:** Poor **ULE:** Short

Observations: Decay. Hollows. Included codominant stems. Previously

lopped. Previous failures. Cable brace installed.

Works: Deadwood

Priority: High **RoH:** 1/500,000 **TPZ (m):** 7.2

Tree Id: 117 **Location:** Onsite

Botanical Name: *Hesperocyparis arizonica* **Origin:** Exotic

Common Name Arizona Cypress Age: Semi mature

Tree Height (m): 10 Canopy Spread (m): 5 DBH (cm): 30

Health: Good **Structure:** Good **ULE:** Long

Observations:

Works:

Priority: No works **RoH:** <1/1,000,000 **TPZ (m):** 3.6

For life and limb

Tree Id: 118 **Location:** Onsite

Botanical Name: *Brachychiton populneus* **Origin:** Vic. Native

Common Name: Kurrajong Age: Mature

Tree Height (m): 8 Canopy Spread (m): 8 DBH (cm): 30

Health: Fair **Structure:** Fair **ULE:** Medium

Observations:

Works:

Priority: No works **RoH:** <1/1,000,000 **TPZ (m):** 3.6

Tree Id: 119 Location: Onsite

Botanical Name: Syzygium sp. Origin: Aus. Native

Common Name Lilly Pilly Age: Mature

Tree Height (m): 12 Canopy Spread (m): 12 DBH (cm): 70

Health: Good **Structure:** Fair **ULE:** Medium

Observations: ?australe. Encroaching structures.

Works: Asset clearance

Priority: Asset **RoH:** <1/1,000,000 **TPZ (m):** 8.4

Management

Tree Id: 120 Location: Onsite

Botanical Name: *Pittosporum undulatum* **Origin:** Vic. Native

Common Name Sweet Pittosporum **Age:** Semi mature

Tree Height (m): 6 Canopy Spread (m): 6 DBH (cm): 26

Health: Poor Structure: Fair ULE: Short

Observations: Weed species. Acute codominant stems. In decline.

Works: Removal

Priority: Medium **RoH:** <1/1,000,000 **TPZ (m):** 3.12

For life and limb

Tree Id: 151 Location: Onsite

Botanical Name: *Magnolia grandiflora* **Origin:** Exotic

Common Name: Bull Bay Age: Semi mature

Tree Height (m): 6 Canopy Spread (m): 4 DBH (cm): 12

Health: Fair **Structure:** Good **ULE:** Medium

Observations: Thin canopy

Works: Tree Health Treatment

Priority: Tree Health **RoH:** <1/1,000,000 **TPZ (m):** 2

Tree Id: 152 Location: Onsite

Botanical Name: Jacaranda mimosifolia Origin: Exotic

Common Name Jacaranda Age: Semi mature

Tree Height (m): 8 Canopy Spread (m): 6 DBH (cm): 25

Health: Fair **Structure:** Fair **ULE:** Short

Observations:

Works: Deadwood, Tree Health Treatment

Priority: High **RoH:** 1/500,000 **TPZ (m):** 3

Tree Id: 153 Location: Onsite

Botanical Name: *Cupressus macrocarpa* **Origin:** Exotic

Common Name Monterey Cypress Age: Semi mature

Tree Height (m): 8 Canopy Spread (m): 5 DBH (cm): 20

Health: Good Structure: Good ULE: Medium

Observations:

Works:

Priority: No works **RoH:** <1/1,000,000 **TPZ (m):** 2.4

email: info@melbournetreecare.com.au web: www.melbournetreecare.com.au

© Melbourne Tree Care P.L This document may <u>not</u> be reproduced without permission.

For life and limb

Tree Id: 211 Location: Onsite

Botanical Name: *Tilia cordata* **Origin:** Exotic

Common Name: Small Leaved Lime Age: Semi mature

Tree Height (m): 6 Canopy Spread (m): 4 DBH (cm): 23

Health: Good **Structure:** Fair **ULE:** Medium

Observations: Possum grazed

Works: Possum Guard

Priority: Tree Health **RoH:** <1/1,000,000 **TPZ (m):** 2.76

Tree Id: 212 Location: Onsite

Botanical Name: Olea europaea Origin: Exotic

Common Name European Olive Age: Mature

Tree Height (m): 5 Canopy Spread (m): 4 DBH (cm): 12

Health: Good **Structure:** Fair **ULE:** Medium

Observations: Encroaching structure.

Works: Asset clearance

Priority: Asset **RoH:** <1/1,000,000 **TPZ (m):** 2

Management

Tree Id: 213 Location: Onsite

Botanical Name: *Pittosporum undulatum* **Origin:** Vic. Native

Common Name Sweet Pittosporum **Age:** Juvenile

Tree Height (m): 2 Canopy Spread (m): 1 DBH (cm): 10

Health: Fair **Structure:** Fair **ULE:** Medium

Observations: Group of trees. Weed species

Works:

Priority: No works **RoH:** <1/1,000,000 **TPZ (m):** 2

For life and limb

Appendix C: Glossary of Terms

Age

Juvenile Juvenile or recently planted approximately 1-7 years.

Semi Mature Tree actively growing.

Mature Tree has reached expected size in situation.
Senescent Tree is over mature and has started to decline.

Origin

Victorian native Trees that are naturally occurring within Victoria Australian native Trees that are naturally occurring within Australia

Exotic Trees that are not naturally occurring to any part of Australia

USEFUL LIFE EXPECTANCY - ULE

The useful life of a tree is an estimate of how long a tree is likely to remain in the landscape based on health, amenity and risk.

Long ULE Trees that appear to be retainable with an acceptable level of risk for more than 40 years.

- 1. Structurally sound trees located in positions that can accommodate future growth.
- 2. Storm damaged or defective trees that could be made suitable for retention in the long term by remedial tree surgery.
- 3. Trees of special significance for historical, commemorative or rarity reasons that would warrant extraordinary efforts to secure their long-term retention.

Medium ULE Trees that appear to be retainable with an acceptable level of risk for 15 to 40 years.

- 1. Trees that may only live between 15 and 40 years.
- 2. Trees that may live for more than 40 years but would be removed to allow the safe development of more suitable individuals.
- 3. Trees that may live for more than 40 years but would be removed during the course of normal management for safety and nuisance reasons.
- 4. Storm damage or defective trees that can be made suitable for retention in the medium term by remedial work.

Short ULE Trees that appear to be retainable with an acceptable level of risk for 5 to 15 years.

1. Trees that may live for 5 to 15 years.

For life and limb

- 2. Trees that may live for more than 15 years but would be removed to allow the safe development of more suitable individuals.
- 3. Trees that may live for more than 15 years but would be removed during the course of normal management for safety and nuisance reasons.
- 4. Storm damaged or defective trees that require substantial remedial work to make safe and are only suitable for retention in the short term.

0-5 Years

Trees with a high level of risk that would need removal within the next 5 years.

- 1. Dead trees.
- 2. Dying or suppressed and declining trees through disease or inhospitable conditions.
- 3. Dangerous trees through instability or recent loss of adjacent trees.
- 4. Dangerous trees through structural defects including cavities, decay, included bark, wounds or poor form.
- 5. Damaged trees that are considered unsafe to retain.
- 6. Trees that will become dangerous after removal of other trees for the above reasons.

Condition

This is a combined indicator of 'health' and 'structure' based on the following descriptors:

Health

Good

Foliage of tree is entire, with good colour, very little sign of pathogens and of good density. Growth indicators are good ie. Extension growth of twigs and wound wood development. Minimal or no canopy die back (deadwood).

Fair

Tree is showing one or more of the following symptoms; < 25% dead wood, minor canopy die back, foliage generally with good colour though some imperfections may be present. Minor pathogen damage present, with growth indicators such as leaf size, canopy density and twig extension growth typical for the species in this location.

Poor

Tree is showing one or more of the following symptoms of tree decline; > 25% deadwood, canopy die back is observable, discoloured or distorted leaves. Pathogens present, stress symptoms are observable as reduced leaf size, extension growth and canopy density.

or life and limb

Dead Structure

No vascular function.

Good

Trunk and scaffold branches show good taper and attachment with minor or no structural defects. Tree is a good example of the species with a well-developed form showing no obvious root problems or pests and diseases.

Fair

Tree shows some minor structural defects or minor damage to trunk eg. bark missing, there could be cavities present. Minimal damage to structural roots. Tree could be seen as typical for this species.

Poor

There are major structural defects, damage to trunk or bark missing. Co-dominant stems could be present or poor structure with likely points of failure. Girdling or damaged roots obvious. Tree is structurally problematic.

Retention Value

- Exceptional trees must be retained at all costs
 - A tree has horticultural, social, historical or cultural value.
 - A tree that has outstanding habitat value.
 - A tree that is an outstanding size for the species.
 - A tree that is remnant.
 - A tree species that is endangered.
- High trees should be considered for retention wherever possible
 - A tree that is in good-fair health and structure with a long ULE.
 - A tree that is in good health, with good structure, is semi mature or mature, and with a medium ULE.
 - A tree that has cultural, botanical, or landscape significance.
- Medium trees should be considered for retention wherever possible but should not pose a material constraint to site development
 - A tree that is in fair health and structure, is semi mature, and with a medium ULE.

A tree that is in poor health or poor structure, is mature, and with a medium or short ULE.

- **Low** trees should be removed
 - A tree that is in poor health and structure with a short ULE.
 - Weed species.

email: info@melbournetreecare.com.au web: www.melbournetreecare.com.au

Page: 93 of 102

For life and limb

- Third Party trees are third party assets and must be retained at all costs.
 - A tree that is located on adjoining properties.
 - A tree that is located on a nature strip.

Work Descriptors

Formative Pruning

The pruning of young or established trees with the aim of directing plant growth or developing a sound structure by reducing codominant stems, pruning out crossing branches.

Deadwood

The removal of deadwood greater than 30 mm diameter over high target areas. Deadwood over low target areas may be left as it provides habitat for invertebrates and roosting spots for birds.

Reduction Pruning

The removal of the end of upright stems and branches and stems that present with structural defects to reduce their likelihood of failure.

Weight Reduction Pruning

The removal of the end of lateral stems and branches and stems that present with structural defects to reduce their likelihood of failure.

Cable Bracing

Where trees have significant structural defects that cannot be mitigated through pruning alone, cable bracing is installed. The cable is installed between codominant stems or on larger lateral branches that are above targets.

Tree Removal

Tree removal is last resort where the tree is either dead, dying or has structural defects that cannot be rectified using tradition tree management options.

Aerial Inspection

Climbing the tree using non-invasive methods to inspect the tree from within the canopy. Aerial inspections are used when the assessing arborist has identified a possible defect

email: info@melbournetreecare.com.au web: www.melbournetreecare.com.au

© Melbourne Tree Care P.L This document may <u>not</u> be reproduced without permission.

Page: 94 of 102

For life and limb

within the canopy that cannot be accurately assessed from ground level. Aerial inspections should be carried out by suitably qualified persons (minimum AQF V).

Uplift Pruning

The pruning of lower branches for pedestrian or vehicle clearance in high use areas.

Asset Clearance Pruning

The pruning of branches to provide clearance from buildings, lights, signs and security cameras.

Tree Health Treatments

Health treatments can include soil testing, soil treatments to remedy toxicities and deficiencies, and pest management.

For life and limb

Appendix D: QTRA Methodology

The Quantified Tree Risk Assessment (QTRA) system, developed by Mike Ellison (2005), applies established and accepted risk management principles to tree safety management. The system moves the management of tree safety away from labelling trees as either 'safe' or 'unsafe' and thereby away from requiring definitive judgements from either tree assessors or tree managers. Instead, QTRA quantifies the risk of significant harm from tree failure in a way that enables tree managers to balance safety with tree values and operate to predetermined limits of tolerable or acceptable risk.

Target

In tree-failure risk assessment, a Target is anything of value that could be harmed in the event of tree failure

Tree or Branch Size

In the quantification of risk from falling trees, stem or branch mass is probably the most realistic available measure of the likely force upon impact. The relationship between the diameter and the mass of the stem or branch provides a readily measurable estimate of this.

QTRA Probability of Failure

The Probability of Failure within the coming year for the tree or branch is estimated in relation to two benchmarks and recorded in the QTRA assessment as a Range of value.

Risk of Harm

The QTRA output is termed the Risk of Harm and is a measure of the likelihood x consequence of tree failure.

For life and limb

Target	Property	Human (not in	Vehicle Traffic (number	Ranges of Value
Range		vehicles)	per day)	_
1	\$3 400,000- >\$340 000	Occupation: Constant – 2.5 hours/day Pedestrians & cyclist: 720/hour – 73/hour	26 000 - 2 700 @ 110kph 28 000 - 2 900 @ 100kph 31 000 - 3 200 @ 90kph 32 000 - 3 300 @ 80kph 36 000 - 3 700 @ 70kph 42 000 - 4 300 @ 60kph 47 000 - 4 800 @ 50kph	1/1 ->1/10
2	\$340 000- >\$34 000	Occupation: 2.4 hours/day – 15 min/day Pedestrians & cyclist: 72/hour – 8/hour	2 600 - 270@ 110kph 2 800 - 290@ 100kph 3 100 - 320@ 90kph 3 200 - 330@ 80kph 3 600 - 370@ 70kph 4 200 - 430@ 60kph 4 700 - 480@ 50kph	1/10 - >1/100
3	\$34 000 - >\$3 400	Occupation: 14 min/day – 2 min/day Pedestrians & cyclist: 7/hour – 2/hour	260 - 27@ 110kph 280 - 29@ 100kph 310 - 32@ 90kph 320 - 33@ 80kph 360 - 37@ 70kph 420 - 43@ 43kph 470 - 48@ 50kph	1/100 - >1/1 000
4	\$3 400 - >\$340	Occupation: 1 min/day – 2 min/week Pedestrians & cyclist: 1/hour – 3/day	26 - 4@ 110kph 28 - 4@ 100kph 31 - 4@ 90kph 32 - 4@ 80kph 36 - 5@ 70kph 42 - 5@ 60kph 47 - 6@ 50kph	1/1 000 ->1/10 000
5	\$340 - >\$34	Occupation: 1 min/week – 1 min/month Pedestrians & cyclist: 2/day – 2/week	3 - 1@ 110kph 3 - 1@ 100kph 3 - 1@ 90kph 3 - 1@ 80kph 4 - 1@ 70kph 4 - 1@ 60kph 5 - 1@ 50kph	1/10 000 - >1/100 000
6	\$34 - \$3	Occupation: <1 min/month - 0.5 min/year Pedestrians & cyclist: 1/week - 6/year	None	1/100 000 - 1/1 000 000

Failure Size Ranges

Size Range	Size of Branch	Impact Potential
1	> 450mm (>18") dia.	1/1 - >1/2
2	450mm (18") dia 260mm (101/2") dia.	1/2 - >1/8.6
3	250mm (10") dia 110mm (41/2") dia.	1/8.6 - >1/82
4	100mm (4") dia 25mm (1") dia.	1/82 - 1/2 500

email: info@melbournetreecare.com.au web: www.melbournetreecare.com.au

Page: 97 of 102

For life and limb

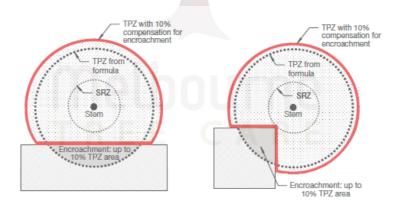
Probability of Failure Ranges

Pr	Probability of Failure		
1	1/1 - >1/10		
2	1/10 - >1/100		
3	1/100 - >1/1 000		
4	1/1,000 - >1/10 000		
5	1/10,000 - >1/100 000		
6	1/100,000 - >1/1 000 000		
7	1/1,000,000 - 1/10 000 000		

Risk Threshold Ranges

Thresholds	Description	Action
	Unacceptable Risks will not ordinarily be tolerated	Control the risk
1/1 000	Unacceptable (where imposed on others) Risks will not ordinarily be tolerated	Control the risk Review the risk
	Tolerable (by agreement) Risks may be tolerated if those exposed to the risk accept it, or the tree has exceptional value	Control the risk unless there is broad stakeholder agreement to tolerate it, or the tree has exceptional value Review the risk
1/10 000	Tolerable (where imposed on others) Risks are tolerable if ALARP	Assess costs and benefits of risk control Control the risk only where a significant benefit might be achieved at reasonable cost Review the risk
1/1 000 000	Broadly Acceptable Risk is already ALARP	No action currently required Review the risk

For life and limb


Appendix E: Tree Protection Zones

A Tree Protection Zone (TPZ), as stated by the Australian Standard AS4970: 2009, Protection of trees on development sites, is the principal means of protection of trees on development site. The TPZ is a combination of the root area and crown area requiring protection. It is an area isolated from construction disturbance, so that the tree remains viable.

The Australian Standard AS4970: 2009 is being used in assessing the protection areas for each tree as it describes the best practices for the planning and protection of trees on development sites.

In calculating the radius for the Tree Protection Zones (TPZ), the DBH, measured at 1.4m from the ground, is multiplied by 12. The TPZ requirements are as follows:

- If the TPZ is encroached by less than 10%, the Australian Standard AS4970: 2009 states: *detailed root investigations should not be required.*
- If the TPZ is encroached by more than 10%, the Australian Standard AS4970: 2009 states: the project Arborist must demonstrate that the tree(s) would remain viable. The area lost to this encroachment should be compensated for elsewhere and contiguous with the TPZ.

Examples of encroachment (AS4970: 2009)

Structural Root Zone (SRZ) is the area around the base of the tree required for stability in the ground. These roots are fundamental for the trees structure and health. The standard states:

or life and limb

"The area around the base of a tree required for the tree's stability in the ground. The woody root growth and soil cohesion in this area are necessary to hold the tree upright. The SRZ is nominally circular with the trunk at its centre and is expressed by its radius in metres. This zone considers a tree's structural stability only, not the root zone required for a tree's vigour and long-term viability, which will usually be a much larger area." (AS4970)

To calculate the SRZ, the equation is $(D \times 50)^0.42 \times 0.64$, where D is the Diameter at Base (DAB).

The effects of root loss or damage by any means could include:

- Loss of stability if structural woody roots or even lower order woody roots are cut
- Reduction in water and nutrient uptake
- An eventual loss of leaves, reduced photosynthesis and thus sugar production
- Decay as a result of wounding
- Predisposition to soil borne pathogens

email: info@melbournetreecare.com.au web: www.melbournetreecare.com.au

© Melbourne Tree Care P.L This document may <u>not</u> be reproduced without permission.

Page: 100 of 102

For life and limb

Appendix F: References

- Costello, L.R, Perry, E.J, Matheny, N.P, Henry, J.M, Geisel, P.M, 2003. Abiotic Disorders
 of Landscape Plants: A Diagnostic Guide. University of California Agriculture and
 Natural Resources, Oakland, California.
- Ellison, M.J., 2005, *Quantified tree risk assessment used in the management of amenity trees*, Journal of Arboriculture 31(2) March 2005, International Society of Arboriculture, Champaign, Illinois, USA.
- Mattheck, C. and Breleor, H., 1994, *The body language of trees*, The Stationery Office, London, UK.
- de Queiroz, D, Malherbe Camargo, J, Dedecek, R, Oliveira, E, Rocha Zanol, K, Nogueira Melido, R, and Burckhardt, D 2016, 'Effect of silicon application to Eucalyptus camaldulensis on the population of Glycaspis brimblecombei (Hemiptera: Aphalaridae)', *Brazilian Journal Of Forest Research / Pesquisa Florestal Brasileira*, 36, 86, pp. 85-94,
- Shigo, A.L. 1991. *Modern Arboriculture*, Shigo and Trees, Associates, Durham, New Hampshire.
- Standards Australia 2007 SAI Global AS4373-2007 Pruning of Amenity Trees
- Standards Australia 2009 SAI Global AS4970 Protection of Trees on Development Sites

Appendix G: Qualifications and Experience

Matthew P James has the following qualifications and experience:
Master of Urban Horticulture (studying)
Graduate Certificate in Arboriculture
Diploma of Arboriculture
QTRA (Quantified Risk Assessment) registered user
Arboriculture Australia National Conference: 2016
Tree Anatomy Workshop (Mark Hartley) 2016
Cert Nutrition Farming 2015
15+ Years industry experience

For life and limb

Appendix H: Report Limitations and Constraints

- This is a 'Ground based report'. Trees were inspected from the ground only. Tree
 canopies were not accessed for inspection unless otherwise stated within the
 report.
- The report is limited to the time of inspection.
- The report reflects the trees as found on the days of inspection. Any changes to site conditions or surroundings, such as construction works or landscape works may alter the findings of the report subject to conditions and recommendations as set out within the report.
- The report is based on the inspection and the material available at the time of inspection or that information further to the inspection found within the report.
- No soil samples were taken for laboratory analysis.
- Tree roots were not inspected below ground except where previously exposed and/or where otherwise stated within the report.
- All images supplied are interpretations only and should not be taken as true at time of inspection or indicative of tree condition or status at time of inspection or time of report release, inclusive of Google images if applicable

Appendix I: Disclaimer

Although MELBOUNRE TREE CARE P.L. uses all due care and skill in providing you the information made available in this report, to the extent permitted by law MELBOURNE TREE CARE P.L. otherwise excludes all warranties of any kind, either expressed or implied. To the extent permitted by law, you agree that MELBOURNE TREE CARE P.L. is not liable to you or any other person or entity for any loss or damage caused or alleged to have been caused (including loss or damage resulting from negligence), either directly or indirectly, by your use of the information (including by way of example, Arboricultural advice) made available to you in this report. Without limiting this disclaimer, in no event will MELBOURNE TREE CARE P.L. be liable to you for any lost revenue or profits, or for special, indirect, consequential or incidental damage (however caused and regardless of the theory of liability) arising out of or related to your use of that information, even if MELBOURNE TREE CARE P.L. has been advised of the possibility of such loss or damage.

email: info@melbournetreecare.com.au web: www.melbournetreecare.com.au

Page: 102 of 102